Crater – Wikipédia, a enciclopédia livre (wikipedia.org)
Constelação Taça (Crater). Histórias e lendas (explicatorium.com)
Crater – Wikipédia, a enciclopédia livre (wikipedia.org)
Constelação Taça (Crater). Histórias e lendas (explicatorium.com)
A constante de gravitação universal, também chamada de constante newtoniana da gravitação, constante gravitacional universal, constante de Newton ou constante gravitacional (símbolo: G), é uma constante física de caráter universal que figura na lei da gravitação universal de Isaac Newton.
Constante gravitacional universal – Wikipédia, a enciclopédia livre (wikipedia.org)
6,67 x 10-11 N∙m²/kg²
A constante de gravitação universal é uma constante de proporcionalidade que relaciona a força de atração entre dois corpos com suas massas e a distância entre eles. Ela foi calculada pela primeira vez por Henry Cavendish em 1798. Seu valor numérico é aproximadamente 6,67 x 10-11 N∙m²/kg² no Sistema Internacional de Unidades. Ela está presente na Lei da Gravitação Universal de Isaac Newton.
Compressor
O compressor é um equipamento industrial concebido para aumentar a pressão de um fluido em estado gasoso (ar, vapor de água, hidrogênio, etc.. Normalmente, conforme a equação de Clapeyron, a compressão de um gás também provoca o aumento de sua temperatura.
Tipos
Os compressores podem ser classificados em 2 tipos principais, conforme seu princípio de operação:
Compressores de deslocamento positivo (ou Estáticos): Estes são subdivididos ainda em Alternativos ou Rotativos.
Nos compressores alternativos a compressão do gás é feita em uma câmara de volume variável por um pistão, ligado a um mecanismo biela-manivela similar ao de um motor alternativo. Quando o pistão no movimento ascendente comprime o gás a um valor determinado, uma válvula se abre deixando o gás escapar, praticamente com pressão constante. Ao final do movimento de ascensão, a válvula de exaustão se fecha, e a de admissão se abre, preenchendo a câmara a medida que o pistão se move. Nos compressores rotativos, um rotor é montado dentro de uma carcaça com uma excentricidade (desnivelamento entre o centro do eixo do rotor e da carcaça). No rotor são montadas palhetas móveis, de modo que a rotação faz as palhetas se moverem para dentro e para fora de suas ranhuras. O gás contido entre duas palhetas sucessivas é comprimido a medida o volume entre elas diminui devido à rotação e à excentricidade do rotor. Tais compressores também são aplicados em refrigeração (ver: Motor Schukey).
Compressores de Dinâmicos:Estes são subdivididos ainda em centrífugos ou axiais.
Os compressores dinâmicos ou turbocompressores possuem dois componentes principais: impelidor e difusor. O impelidor é um componente rotativo munido de pás que transfere ao gás a energia recebida de um acionador. Essa transferência de energia se faz em parte na forma cinética e em outra parte na forma de entalpia. Posteriormente, o escoamento estabelecido no impelidor é recebido por um componente fixo denominado difusor, cuja função é promover a transformação da energia cinética do gás em entalpia, com conseqüente ganho de pressão. Os compressores dinâmicos efetuam o processo de compressão de maneira contínua, e portanto correspondem exatamente ao que se denomina, em termodinâmica, um volume de controle.
Os compressores atualmente são utilizados em diversas aplicações. A mais simples é a compressão de ar, seja para acionamento e controle de válvulas, alimentação de motores ou turbinas a gás, até aplicações mais complexas, como o transporte de gás natural, injeção de CO2 em reservatórios subterrâneos, ou compressão de hidrocarbonetos em ciclos de refrigeração.
Quando são aplicados na alimentação forçada de motores, os supercompressores ou turbocompressores são chamados de sistemas de indução forçada. Eles comprimem o ar que flui para o motor. A principal diferença entre um turbocompressor e um compressor é a fonte de energia. Em um compressor, há uma correia que o conecta diretamente ao motor. Ele obtém sua energia da mesma forma como o alternador do carro por exemplo. Um turbocompressor e acionado por uma turbina, que retira energia dos gases de escape do motor e montada no mesmo eixo que o compressor.
Compressores rotativos
Nos compressores rotativos, os gases são comprimidos por elementos giratórios. Outras das particularidades destes tipos de compressores são por exemplo as menores perdas mecânicas por atrito, pois dispensam um maior número de peças móveis, a menor contaminação de ar com óleo lubrificante, a ausência de reações variáveis sobre as fundações que provocam vibrações, o fato de a compressão ser feita de um modo continuo e não intermitente, como sucede nos alternativos e a ausência de válvulas de admissão e de descarga que diminui as perdas melhorando o rendimento volumétrico. Outro aspecto muito importante, para os diferentes tipos, prende-se com a economia de energia, com os rendimentos volumétrico, associados a fugas, e mecânico, associado a movimentos relativos entre as peças que constituem a máquina, e com a manutenção dos mesmos.
Compressores de parafusos
Esse tipo de compressor possui dois rotores em forma de parafusos que giram em sentido contrario, mantendo entre si uma condição de engrenamento. A conexão do compressor com o sistema se faz através das aberturas de sucção e descarga, diametralmente opostas: O gás penetra pela abertura de sucção e ocupa os intervalos entre os filetes dos rotores. A partir do momento em que há o engrenamento de um determinado filete, o gás nele contido fica encerrado entre o rotor e as paredes da carcaça. A rotação faz então com que o ponto de engrenamento vá se deslocando para a frente, reduzindo o espaço disponível para o gás e provocando a sua compressão. Finalmente, é alcançada a abertura de descarga, e o gás é liberado. De acordo com o tipo de acesso ao seu interior, os compressores podem ser classificados em herméticos, semi-herméticos ou abertos. A categoria dos compressores de parafuso pode também ser sub-dividida em compressores de parafuso duplo e simples. Os compressores de parafuso podem também ser classificados de acordo com o número de estágios de compressão, com um ou dois estágios de compressão (sistemas compound).
Compressores de parafusos de baixa pressão
O principio de funcionamento é o mesmo do compressor de parafuso, eles trabalham com pressões iguais ao soprador lóbulo, a única diferença que os rotores têm uma cobertura especial de teflon para garantir menores folgas e ausência de contato do óleo com o ar, esses tipos de sopradores são isentos de óleo e com eficiência superior ao lóbulo (Roots), em pressões mais altas sua vida útil é superior.
Compressores de parafusos simples
O compressor de parafuso simples, consiste num elemento cilíndrico com ranhuras helicoidais, acompanhado por duas rodas planas dispostas lateralmente e girando em sentidos opostos. O parafuso gira com uma certa folga dentro de uma carcaça composta de uma cavidade cilíndrica. Esta contém duas cavidades laterais onde se alojam as rodas planetárias. O parafuso é acionado pelo motor, e está encarregado de acionar as duas rodas. O processo de compressão ocorre tanto na parte superior como na inferior do compressor. Com isto consegue-se aliviar a carga radial sobre os mancais, de modo a que a única carga que atua sobre os mesmos, além daquela resultante do próprio peso, é atuante sobre os eixos das rodas planetárias, resultante da pressão do gás nos dentes das mesmas durante o engrenamento.
Origem: Wikipédia, a enciclopédia livre.
Aviso!
Espaço reservado para a informação acadêmica do assunto. Conhecimento aplicado no livro Eternidade 1 - Fatos 2020 e 2021.
Com o tempo posso preencher esse espaço adicionando informação e novos direcionamentos para meus livros.
Tentarei facilitar, mostrando o significado e o caminho, para que consiga entender com base científica tudo sobre a Eternidade 1.
Você tem que saber ou pelo menos conhecer, para aplicar o conhecimento na realidade.
Se chegou até aqui, peço desculpas pela falta de informações.
Obrigado pela atenção, agradeço a Deus, tenho esperança no futuro melhor.
Em construção...
Marcadores: Compressor, Capítulo 33 - Projeto Viagens na velocidade da luz, Eternidade 1 - Fatos 2020 e 2021, Estudos acadêmicos.
Combustão
Combustão ou queima é uma reação química exotérmica (há exceções) entre uma substância (o combustível) e um gás (o comburente), geralmente o oxigênio, para liberar calor e luz. Durante a reação de combustão são formados diversos produtos resultantes da combinação dos átomos dos reagentes. No caso da queima em ar de compostos orgânicos (metano, propano, gasolina, etanol, diesel, etc) são formados centenas de compostos, por exemplo CO2, CO, H2O, H2,CH4, NOx,SOx, fuligem, etc, sendo que alguns desses compostos causam a chuva ácida, danos aos ciclos biogeoquímicos do planeta e agravam o efeito estufa.
Combustível
Quando se produz a uma temperatura suficientemente baixa, isto é, inferior a 500 °C, não havendo, regra geral, emissão de luz. A oxidação de um metal (ferro, cobre, zinco, etc.) em contato com o ar úmido é um exemplo deste tipo de combustão. A combustão lenta é uma forma de queima que acontece a baixas temperaturas. A respiração celular e formação de ferrugem são exemplos de combustões lentas.
Comburente
É aquela em que se produz chama e, vulgarmente, designa-se por fogo. Neste caso, devido à mistura dos gases inflamados com o ar forma-se a chama. No caso dos sólidos, cuja combustão decorre à superfície, verifica-se a incandescência a partir da sua ignição e também através da formação de brasas. Estas surgem quando o combustível já não liberta gases suficientes para provocar chama. A combustão do carvão ilustra estes aspectos.
Energia
Combustão resultante da mistura de gases ou partículas finamente divididas com o ar numa percentagem bem determinada – mistura explosiva ou detonante – propagando-se a uma velocidade superior a 340 m/s. Neste caso, a mistura tem de ocupar todo o espaço onde está contida e, no momento da explosão, provoca uma elevação de temperatura ou de pressão ou de ambas, simultaneamente, sobre todo o espaço confinante.
Usamos como combustível a gasolina, o etanol ou o diesel. Combustão é o processo de obtenção de energia.
Combustão completa
Em uma combustão completa, o reagente irá queimar no oxigênio, produzindo um número limitado de produtos e uma chama oxidante, azul. Quando um hidrocarboneto queima no oxigênio, a reação gerará apenas dióxido de carbono e água. Quando elementos como carbono, nitrogênio, enxofre e ferro são queimados, o resultado será os óxidos mais comuns. Carbono irá gerar o dióxido de carbono. Nitrogênio irá gerar o dióxido de nitrogênio . Enxofre irá gerar dióxido de enxofre . Ferro irá gerar óxido de ferro (III) . A combustão completa é naturalmente improvável de ocorrer, a menos que a reação ocorra em situações cuidadosamente controladas, como, por exemplo, em um laboratório.
Combustão turbulenta
A combustão turbulenta é caracterizada por fluxos turbulentos. É a mais usada na indústria (ex: turbinas de gás, motores a diesel, etc.), pois a turbulência ajuda o combustível a se misturar com o comburente.
Combustão incompleta
Na combustão incompleta não há o suprimento de oxigênio adequado para que ela ocorra de forma completa. O reagente irá queimar em oxigênio, mas poderá produzir inúmeros produtos. Quando um hidrocarboneto queima em oxigênio, a reação gerará dióxido de carbono, monóxido de carbono, água, e vários outros compostos como óxidos de nitrogênio, dependendo da composição do combustível. Também há liberação de átomos de carbono, sob a forma de fuligem. A combustão incompleta é muito mais comum que a completa e produz um grande número de subprodutos. No caso de queima de combustível em automóveis, esses subprodutos podem ser muito prejudiciais à saúde, ao meio ambiente e ao próprio carro.
Combustão de combustíveis líquidos
A combustão de um combustível líquido em uma atmosfera oxidante acontece na verdade em forma gasosa. Isto quer dizer, quem queima é o vapor, não o líquido. Portanto, um líquido inflamável normalmente só irá pegar fogo acima de uma certa temperatura, que é seu ponto de fulgor. Abaixo dessa temperatura, o líquido não irá evaporar rápido o suficiente para sustentar o fogo caso a fonte de ignição seja removida.
Origem: Wikipédia, a enciclopédia livre.
Aviso!
Espaço reservado para a informação acadêmica do assunto. Conhecimento aplicado no livro Eternidade 1 - Fatos 2020 e 2021.
Com o tempo posso preencher esse espaço adicionando informação e novos direcionamentos para meus livros.
Tentarei facilitar, mostrando o significado e o caminho, para que consiga entender com base científica tudo sobre a Eternidade 1.
Você tem que saber ou pelo menos conhecer, para aplicar o conhecimento na realidade.
Se chegou até aqui, peço desculpas pela falta de informações.
Obrigado pela atenção, agradeço a Deus, tenho esperança no futuro melhor.
Em construção...
Marcadores: Combustão, Capítulo 33 - Projeto Viagens na velocidade da luz, Eternidade 1 - Fatos 2020 e 2021, Estudos acadêmicos.