domingo, 16 de janeiro de 2022

Músculo cardíaco

 

Músculo cardíaco

O músculo estriado cardíaco é o tipo de tecido muscular que forma as camadas musculares do coração, conhecida por miocárdio.

Também é chamado tecido muscular estriado cardíaco.

O coração é formado por três tipos principais de músculos:

Ventricular, contrai de forma parecida com o músculo estriado, mas a duração de contração é maior.

Atrial, contrai de forma parecida com o músculo estriado, mas a duração de contração é maior.

Fibras musculares excitatórias e condutoras, só se contraem de modo mais fraco, pois contêm poucas fibrilas contráteis; ao contrário, apresentam ritmicidade e velocidade de condução variáveis, formando um sistema excitatório para o coração.

Morfologia do tecido muscular cardíaco

As midias se dispõem lado a lado, juntando-se e separando-se entre si, através de "junções de abertura".

Uma grande vantagem neste tipo de disposição de fibras é que o impulso, uma vez atingindo uma célula, passa com grande facilidade às outras.

Este conjunto de fibras, unidas entre si, observadas em microscópio óptico, aparentemente forma um sincício, mas ao observar em um microscópio eletrônico, nota-se a formação de discos intercalares.

Existem dois sincícios funcionais formando o coração:

Sincício atrial

Sincício ventricular

Os dois são separados por uma membrana de tecido fibroso.

Isso possibilita que a contração nas fibras que compõem o sincício atrial ocorra em tempo diferente da que ocorre no sincício ventricular.

Isso ocorre para a perfeição do batimento cardíaco, ou seja, enquanto o átrio se contrai, denominado sístole o sangue é ejetado para o ventrículo, denominado diástole, e quando o átrio relaxa (diástole), o ventrículo se contrai (sístole) proporcionando assim o fechamento das válvulas e impulsionando o sangue para as artérias.

Portanto, o "atraso" dos impulsos, ocasionado pela membrana de tecido fibroso entre átrios e ventrículos, causa diferença de contração entre eles.

As contrações se caracterizam assim por ser rítmica, vigorosa e involuntária.

Características que diferenciam músculo cardíaco e músculo esquelético

Os dois são estriados, mas só o esquelético possui filamentos de actina e miosina que utilizam o mecanismo de "catraca".

As fibras musculares cardíacas têm discos (membranas que delimitam a célula) intercalados entre uma fibra e outra, o que não acontece com as fibras musculares esqueléticas.

Estes discos têm uma resistência elétrica muito pequena, o que permite que um potencial de ação percorra livremente entre as células musculares cardíacas.

O músculo cardíaco possui contrações involuntárias, sendo controladas pelo sistema nervoso autônomo.

Fonte: Wikipédia, a enciclopédia livre.


Esqueleto

 

Esqueleto

Esqueleto é um nome genérico dado a estruturas de sustentação, principalmente de seres vivos, podendo ser usado também em outras áreas, como engenharia e construção.

Há três principais tipos de esqueletos de seres vivos:

Exoesqueleto ou esqueleto externo - presente em artrópodes, como formigas, aranhas, e caranguejos, e em alguns outros invertebrados, como as conchas de alguns moluscos.

Seu principal componente é a quitina, um polissacarídeo associado a outros grupos amino.

Endoesqueleto ou esqueleto interno - presente por exemplo em vertebrados, como peixes, gatos e humanos. Exemplo: esqueleto humano.

Os esqueletos internos são formados por ossos, sendo estes órgãos compostos predominantemente por tecido ósseo verdadeiro e, em menor proporção, por outros tipos de tecidos

Hidroesqueleto ou esqueleto hidrostático - consiste em cavidades preenchidas por fluidos, presente em equinodermos como estrela-do-mar, anelídeos como a minhoca e nematóides, entre outros invertebrados.

Humanos

O esqueleto humano é constituído de ossos fundidos, completados por cartilagem e sustentados por ligamentos, tendões e músculos.

É um arcabouço (armadura, armação estrutura) que serve como um andaime, ancora os músculos e protege órgãos como o cérebro, pulmão e coração.

Os dentes não se constituem de tecidos geralmente encontrados em outros ossos, por isso não são considerados ossos e eles não são membros do sistema esquelético.

O maior osso do corpo é o fêmur localizado na coxa, e menor é o estribo no ouvido médio.

Em um adulto, o esqueleto representa cerca de 14% do peso corporal total, e metade desse peso é água.

Dentre os ossos fundidos, estão os da pelve e o crânio. Nem todos os ossos estão interligados diretamente:

Existem três ossos em cada ouvido médio chamados ossículos que se articulam apenas uns com os outros.

O osso hioide, que está localizado no pescoço e serve como ponto de ligação para a língua, não se articula com os outros ossos do corpo, sendo apoiado por músculos e ligamentos.

Existem 206 ossos no esqueleto humano adulto podendo ocorrer variação.

Esse número depende de se os ossos pélvicos - que não tem dominação de cada lado - são contados como um ou três ossos em cada lado (ílio, ísquio e púbis), se o cóccix ou cauda óssea é contado como um ou quatro ossos separados, e não conta os ossos wormianos variáveis entre suturas do crânio.

Do mesmo modo, o sacro é geralmente considerado como um único osso, em vez de cinco vértebras fundidas.

Existe também um número variável de pequenas ossos sesamoides, comumente encontrados em tendões.

A patela ou rótula em cada lado é um exemplo de um osso sesamoide maior. As rótulas são contadas no total, uma vez que são constantes.

O número de ossos varia entre os indivíduos e com a idade - recém-nascidos têm mais de 270 ossos, alguns dos quais estão fundidos.

Esses ossos são organizados em um eixo longitudinal, o esqueleto axial, ao qual o esqueleto apendicular está ligado.

O esqueleto humano leva 20 anos para estar totalmente desenvolvido. Em muitos animais, os ossos do esqueleto contêm medula, que produz células sanguíneas.

Grande parte do esqueleto humano mantém o padrão segmentar antigo presente em todos os vertebrados (mamíferos, aves, peixes, répteis e anfíbios), com unidades básicas sendo repetidas.

Este padrão segmentar é particularmente evidente na coluna vertebral e na caixa torácica.

Ossos e cartilagem

Ossos

Os ossos são órgãos que fazem parte da endoesqueleto dos vertebrados.

Sua função é mover, apoiar e proteger os vários órgãos do corpo, produzir glóbulos vermelhos e brancos e armazenar minerais.

O tecido ósseo é um tipo de tecido conjuntivo denso.

Por apresentam-se em uma variedade de formas e ter uma complexa estrutura interna e externa, os ossos são leves, porém fortes e rígidos, para além de cumprirem a muitas outras funções.

Um dos tipos de tecido que compõe o osso é o tecido ósseo mineralizado, também chamado apenas tecido ósseo, que lhe confere rigidez e uma estrutura tridimensional interna em forma de favo de mel.

Outros tipos de tecido encontrados nos ossos incluem medula, endósteo e periósteo, nervos, vasos sanguíneos e cartilagem. Existem 206 ossos no corpo humano adulto e 270 em uma criança.

Volume ósseo

O volume de osso é determinado pelas taxas de formação de osso e reabsorção óssea.

Uma pesquisa recente sugeriu que determinados fatores de crescimento podem trabalhar para alterar localmente a formação óssea, aumentando a atividade dos osteoblastos.

Numerosos fatores de crescimento relativos a ossos foram isolados e classificados através de culturas de ossos.

Estes fatores incluem o fator de crescimento semelhante à insulina I e II, o fator de transformação do crescimento beta, o fator de crescimento de fibroblastos, o fator de crescimento derivado de plaquetas e as proteínas morfogenéticas ósseas.

Evidências sugerem que as células ósseas produzem fatores de crescimento para o armazenamento extracelular na matriz óssea.

A liberação destes fatores de crescimento a partir da matriz óssea poderia causar a proliferação de precursores dos osteoblastos.

Essencialmente, os fatores de crescimento ósseo podem atuar como determinantes potenciais de formação de osso local.

Pesquisas sugerem que o volume de osso trabecular na osteoporose pós-menopausa pode ser determinada pela relação entre a superfície de formação óssea total e a porcentagem da superfície de reabsorção.

Cartilagem

Um erro comum é considerar que a cartilagem está presente apenas na área do nariz de um ser humano.

No entanto, quando os seres humanos estão no início de seu desenvolvimento no útero, eles têm um precursor de cartilagem à sua estrutura esquelética.

Grande parte dessa substância é então substituída por osso durante o segundo e terceiro trimestre, quando então outras estruturas, como os músculos, se formam em torno dele, formando o esqueleto.

A cartilagem é um tecido conjuntivo duro e inflexível encontrado em muitas áreas nos corpos de humanos e de outros animais, incluindo as articulações entre ossos, as costelas, as orelhas, o nariz, o cotovelo, o joelho, o tornozelo, os brônquios e o disco intervertebral.

Não é tão dura e rígida como o osso, mas é mais rígida e menos flexível do que o músculo.

A cartilagem é composta por células especializadas chamadas condrócitos que produzem uma grande quantidade de matriz extracelular composta de fibras de colágeno Tipo II (exceto fibrocartilagem que também contém colágeno tipo I), substância fundamental abundante rica em proteoglicano e fibras elásticas.

A cartilagem é classificada em três tipos: cartilagem elástica, cartilagem hialina e cartilagem fibrosa, que diferem nas quantidades relativas destes três componentes principais.

Ao contrário de outros tecidos conjuntivos, a cartilagem não contém vasos sanguíneos.

Os condrócitos são abastecidos por difusão, ajudada pela ação de bombeamento gerado pela compressão da cartilagem articular ou flexão da cartilagem elástica.

Assim, em comparação com outros tecidos conjuntivos, a cartilagem cresce e se reconstitui mais lentamente.

Fonte: Wikipédia, a enciclopédia livre.


Esqueleto humano

 

Esqueleto humano

O esqueleto humano é uma das estruturas internas do corpo humano.

É formado pelos ossos e tem como função principal proteger determinados órgãos vitais como o encéfalo, que é protegido pelo crânio, e também os pulmões e o coração, que são protegidos pelas costelas e pelo esterno, e servem também para armazenar gordura e minerais, ajudar com os movimentos do corpo e sustentar o organismo.

Os ossos também armazenam células sanguíneas.

Ele constitui-se de peças ósseas (ao todo 206 ossos no indivíduo adulto) e cartilaginosas articuladas, que formam um sistema de alavancas movimentadas pelos músculos em conjunto com os tendões.

O esqueleto humano pode ser dividido em duas partes:

Esqueleto axial: formado pela caixa craniana, coluna vertebral e caixa torácica.

Esqueleto apendicular: compreende a cintura escapular, formada pelas escápulas e clavículas; cintura pélvica, formada pelos ossos ilíacos (da bacia) e o esqueleto dos membros (superiores ou anteriores e inferiores ou posteriores).

Os ossos do corpo humano variam de formato e tamanho, sendo o maior deles o fémur, que fica na coxa, e o menor o estribo que fica dentro do ouvido médio.

É nos ossos que se prendem os músculos, por intermédio dos tendões.

O esqueleto feminino difere um pouco do masculino, uma vez que o formato da pélvis favorece o parto. É mais ampla e mais larga do que a pélvis masculina para proporcionar um ambiente confortável para o desenvolvimento do feto.

Fazem parte também do esqueleto humano, além dos ossos, os tendões, ligamentos e as cartilagens.

Os ossos começam a se formar a partir do segundo mês da vida intra-uterina.

Ao nascer, a criança já apresenta um esqueleto bastante ossificado, mas as extremidades de diversos ossos ainda mantêm regiões cartilaginosas que permitem o crescimento.

Entre os 18 e 20 anos, essas regiões cartilaginosas se ossificam e o crescimento cessa.

Nos adultos, há cartilagens em locais onde a flexibilidade é importante (na ponta do nariz, orelha, laringe, parede da traquéia e extremidades dos ossos que se articulam).

Funções em geral dos ossos incluem sustentação do corpo, locomoção, proteção dos órgãos vitais (como o coração, pulmão e encéfalo), produção de células sanguíneas e reserva de cálcio.

Divisões

Esqueleto axial

O esqueleto axial consiste de 80 ossos na cabeça e tronco do corpo humano.

Ele é composto por três partes: a coluna vertebral, a caixa torácica e a caixa craniana.

O esqueleto axial também é caracterizado pela função de sustentação do corpo.

Esqueleto apendicular

O esqueleto apendicular compreende a cintura escapular, a cintura pélvica e o esqueleto dos membros (superiores ou anteriores e inferiores ou posteriores).

A estrutura formada pelo esqueleto apendicular auxilia na sustentação e na movimentação do corpo.

Tipos de ossos do corpo humano

Ossos longos: são os ossos mais longos, de uma forma diferente dos outros, por isso ele tem a função de proteger os órgãos vitais sobre a largura e a espessura.

As extremidades são chamadas de epífises: falange proximal (mais próximo do cingulo) e distal, o corpo do osso é chamado diáfise.

Ex: fêmur, tíbia, rádio, ulna bacia.

Ossos curtos: têm equivalência em todas as suas dimensões. Ex: ossos do carpo e ossos do tarso.

Ossos sesamoides: todo o osso que se desenvolve no interior de alguns tendões.

Ossos laminares: (que faz cair em desuso o termo plano): têm o comprimento e a largura maior que a espessura.

 Ex: escápula, ilíaco, costelas, etc.

Ossos irregulares: não têm equivalência em nenhuma de suas dimensões. Ex: vértebras, sacro, etc.

Ossos pneumáticos: ossos irregulares localizados no crânio e que apresentam cavidades que contem ar.

Ex: frontal, esfenóide, maxilar, etc.

Desenvolvimento do esqueleto humano

O esqueleto de um bebê tem cerca de 270 ossos, os quais diminuem para 206 quando o indivíduo atinge a idade adulta, uma vez que alguns ossos se fundem.

Os bebês nascem com estruturas entre alguns ossos do crânio, chamadas fontanelas, popularmente chamadas "moleiras".

São estruturas frágeis que com o passar dos anos tendem a desaparecer.

Existem para permitir a passagem do bebê pelo canal vaginal no parto e crescimento do encéfalo.

Fonte: Wikipédia, a enciclopédia livre.


Tecido muscular estriado

 


Tecido muscular estriado

A capacidade de movimentação é atribuída à existência de células específicas, que se tornaram altamente diferenciadas de forma a desempenhar quase exclusivamente uma função contrátil.

O processo contrátil foi aproveitado pelo organismo para permitir vários tipos de movimentos e atividades necessárias à sua sobrevivência.

Essas necessidades variadas são atendidas por três tipos de músculo: Músculo esquelético, liso e cardíaco.

As fibras musculares dos músculos esquelético e cardíaco estão dispostos em uma configuração ordenada específica, que estabelece uma sequência repetida de bandas homogêneas ao longo de seu comprimento, por isso recebem a nomenclatura de tecido muscular estriado.

Apenas o tecido muscular liso não apresenta em sua composição as estrias transversais, conferindo o aspecto liso.

O tecido muscular apresenta três tipos específicos:

 

Tecido Muscular Esquelético: Células longas, multinucleadas e estriadas.

Apresentam contração forte, rápida, descontínua e de controle voluntário.

São células revestidas pelo tecido conjuntivo que se ligam aos ossos.

Tecido Muscular Cardíaco: Constituído por células ramificadas e interconectadas.

Contração rápida, forte, contínua e de controle involuntário.

Tecido Muscular Liso: As células desse tecido não possuem estriações.

Contração fraca, lenta e controle involuntário.

 

Tecido Muscular Estriado Esquelético

 

Os músculos estriados esqueléticos são conjuntos de centenas ou milhares de células alongadas, multinucleadas e estriadas.

Suas células (miócitos) também chamadas de fibras musculares são agrupadas em feixes envolvidos por uma camada de tecido conjuntivo.

Esse tecido é rígido nas extremidades formando os tendões que ligam os músculos aos ossos.

 

ESTRUTURA

A estrutura muscular possui uma membrana envolvendo cada uma das fibras, são células alongadas e contínuas.

As miofibras são polinucleadas com o núcleo localizado na periferia das fibras.

Ocorrem faixas claras e escuras, dispostas no sentido transversal (estrias).

Essas estrias resultam do arranjo de filamentos muito finos que formam as fibrilas, que, por sua vez, se dispõem ao sentido longitudinal da fibra.

Possuem contrações rápidas, podendo ser voluntária ou involuntária (no caso do músculo cardíaco).

As células musculares têm origem mesodérmica, são produzidas durante a vida embrionária pela fusão de várias células, em forma de sincícios.

Depois que os músculos estão formados, suas células nunca mais se dividem, apenas aumentam de volume, proveniente do treinamento físico, o estado de nutrição.

Devido a formação de novas miofibrilas o tamanho do músculo aumenta de tamanho.

Os músculos apresentam a ocorrência dos túbulos transversos, que são invaginações do sarcolema em forma de tubos, abertos para o exterior, que invadem o sarcoplasma sendo encarregados de levar os impulsos (potencial de ação) para o interior da fibra.

Os tecidos musculares possuem mitocôndrias, uma vez que necessita gerar grande quantidade de energia (ATP) para poder contrair-se.

As mitocôndrias ocupam 2% do volume do citoplasma no tecido esquelético, enquanto no músculo cardíaco, as mitocôndrias ocupam 40% do volume do citoplasma.

Algumas estruturas celulares das fibras musculares recebem nomes especiais: a membrana plasmática é chamada de sarcolema; o citoplasma, sarcoplasma; as mitocôndrias, sarcossomas; e o núcleo, cariossarco.

Os músculos são envolvidos por uma camada de tecido conjuntivo recebendo o nome de tecido esquelético por se unirem aos ossos, como os músculos das pernas, dos braços, do tronco e da face.

Tanto as fibras como todo o músculo são envolvidos por tecido conjuntivo, que contém os nervos e os vasos sanguíneos.

Esses levam oxigênio e nutrientes para as células e retiram o gás carbônico e as substâncias tóxicas resultantes do catabolismo celular, assim como dissipam o calor.

A camada do tecido conjuntivo que envolve a fibra muscular é o endomísio.

O perimísio é o tecido conjuntivo que envolve um conjunto de feixes de fibras.

Por fim, o tecido espesso externo ao músculo é a porção do Epimísio.

Miofibrilas:

Cada fibra muscular contém centenas de milhares de miofibrilas.

Cada miofibrila é composta por filamentos de miosina adjacentes aos filamentos de actina, que são longas moléculas de proteínas responsáveis pelas contrações do músculo.

Os filamentos de miosina e actina estão parcialmente interligados, fazendo com que a miofibrila alterne em faixas escuras e claras.

As faixas claras contêm filamentos de actina, sendo conhecidas como faixas I.

As faixas escuras contêm filamentos de miosina sendo chamadas de faixas A.

As bandas I de uma miofibrila são áreas mais claras porque contêm apenas filamentos finos.

Cada filamento fino se estende parcialmente até as bandas A de cada lado.

Como os filamentos grossos e finos sobrepõem-se nas extremidades de cada banda A, essas extremidades apresentam uma aparência mais escura que a região central.

As regiões centrais mais claras da banda A são denominadas bandas H.

As bandas H centrais contêm apenas filamentos grossos que não são sobrepostos por filamentos finos.

No centro de cada banda I existe uma linha Z escura e fina.

O arranjo dos filamentos grossos e finos entre um par de linhas Z forma um padrão repetitivo, o par de duas linhas Z é representada pela subunidade denominada sarcômero.

Sarcômeros:

Os sarcômeros são as unidades morfofuncionais das fibras musculares.

A estrutura do sarcômero é composta pelo arranjo dos filamentos grossos e finos entre um par de linhas Z.

Nesse sentido, existem numerosos sarcômeros no interior de cada miofibrila.

Durante o processo de contração muscular, os filamentos grossos e finos mantêm seus comprimentos originais.

Portanto, quando a fibra muscular está contraída, o comprimento do sarcômero é de 2 micrômetros.

Nesse comprimento, os filamentos de actina se sobrepõem completamente aos filamentos de miosina, e as pontes dos filamentos de actina estão quase começando a se sobrepor.

Os filamentos finos contêm moléculas de tropomiosina e troponina associadas aos de actina.

A molécula de tropomiosina é longa e fina; contém duas cadeias polipeptídicas em hélice enroladas uma na outra e que se unem pelas extremidades para formar filamentos longos, que se enrolam ao longo dos dois filamentos globulares de actina.

Além da tropomiosina, a troponina é um complexo de três polipeptídios globulosos chamados de subunidades TnT que se liga fortemente à tropomiosina, TnC apresenta alta afinidade por íons Ca2+ e a TnI que inibe a interação entre actina e miosina.

Cada molécula de tropomiosina contém um local específico onde se localiza uma molécula de troponina associada.

Retículo Sarcoplasmático:

O retículo sarcoplasmático é um retículo endoplasmático modificado, consiste em tubos interconectados que circundam cada miofribila da célula muscular, localizados no sarcoplasma.

Esse retículo tem organização especial que é extremamente importante para regular o armazenamento, a liberação, e a recaptação do cálcio e, portanto, a contração muscular.

Numa fibra muscular relaxada, a maior parte do Ca2+ é armazenada nas porções expandidas do retículo sarcoplasmático denominado cisternas terminais.

Quando uma fibra é estimulada a contrair-se por um neurônio motor, o Ca2+ armazenado é liberado do retículo sarcoplasmático, de modo que o íon se ligue à proteína troponina.

Quando a fibra deixa de ser estimulada, o Ca2+ do sarcoplasma é transportado ativamente de volta ao retículo sarcoplasmático.

Dessa forma, os tipos de fibras musculares com contrações muito rápidas apresentam retículos sarcoplasmáticos especialmente muito extensos.

Túbulos Transversos (ou túbulos T)

Os túbulos T são formados a partir do sarcolema e mantêm uma continuidade com o mesmo.

Os túbulos transversos se abrem para o ambiente extracelular através de poros da superfície celular e são capazes de conduzir potenciais de ação.

Nas células musculares, os potenciais de ação podem ser conduzidos para o interior da fibra através da membrana dos túbulos transversos.

Nesse sentindo, os potenciais de ação dos túbulos transversos provocam a liberação de Ca2+ do retículo sarcoplasmático.

Mecanismo da Contração

O sarcômero em repouso consiste em filamento finos e grossos que se sobrepõem parcialmente.

Durante o ciclo de contração, os filamentos conservam seus comprimentos originais.

A contração deve-se ao deslizamento dos filamentos uns sobre os outros, o que aumenta o tamanho da zona de sobreposição entre os filamentos e diminui o tamanho do sarcômero.

A contração se inicia na faixa A, no qual os filamentos finos e grossos se sobrepõem.

Durante a contração a actina e a miosina interagem da seguinte forma, durante o repouso, a molécula de ATP liga-se à ATPase das cabeças da miosina.

Para atacar a molécula de ATP e liberar energia, a miosina necessita da actina, que atua como um cofator.

No musculo em repouso a miosina não pode associar à actina, devido a inativação do local de ligação pelo complexo troponia e tropomiosina fixado sobre o filamento de actina.

Em contrapartida, quando o íon de Ca2+ combinam-se com a unidade TnC da troponina, a configuração espacial das três subunidades de troponina muda e empurra a molécula de tropomiosina.

Em consequência, os canais de ligação da actina com a miosina ficam expostos, ocorrendo a interação das cabeças da miosina com a actina.

Como resultado da ponte entre a cabeça da miosina e a actina, o ATP libera ADP, Pi (fosfato) e energia.

Como a actina está combinada com a miosina, o movimento da cabeça da miosina empurra o filamento da actina, promovendo seu deslizamento sobre o filamento de miosina.

Apesar do filamento grosso possuir um elevado número de cabeças de mosina.

Em cada momento da contração, apenas um pequeno número de cabeças da miosina alinha-se com os locais de combinação da actina.

À medida que as cabeças da miosina movimentam a actina, novos locais para formação das pontes actina- miosina aparecem.

As pontes se desfazem apenas depois que a miosina se une-se à nova molécula de ATP, esta ação determina a volta da cabeça de miosina para sua posição primitiva, preparando-se para um novo ciclo.

Uma única contração muscular é o resultado de milhares de ciclos de formação e destruição de pontes de actina-miosina.

Tipos de fibras musculares

Os músculos são constituídos por vários tipos de fibras. Essas fibras são agrupadas em dois tipos principais:

Fibras do tipo I: São especializadas em movimentos lentos e aeróbicos, com metabolismo oxidativo.

Possuem um menor diâmetro.

Essas fibras possuem a coloração avermelhada, devido á alta concentração de mioglobinas.

Além disso, é uma fibra de contração lenta, pelo fato de sua ATPase de miosina ser baixa.

Fibras do tipo II: São especializadas em contrações rápidas, com metabolismo glicolítico.

As do tipo 2 incluem dois subtipos de fibras musculares, as fibras 2a e 2b.

As fibras do tipo 2a representam fibras mistas, por possuir características intermediárias entre os tipos 1 e 2b.

Possuem propriedades metabólicas que garantem velocidade e resistência à fadiga.

As fibras do tipo 2b são conhecidas como fibras brancas, devido a coloração mais clara recorrente do menor número de mioglobinas.

Além disso, contêm poucas mitocôndrias e uma irrigação limitada.

Contudo, suas características metabólicas, incluindo influxos grande de cálcio e alta atividade ATPásica, propiciam condições de alta velocidade, ainda que por tempo reduzido.

Tecido Muscular Estriado Cardíaco

O músculo cardíaco encontra-se apenas no coração.

Assim como o músculo esquelético, ele é estriado e, como o músculo liso, ele é uninucleado e seu controle é realizado pelo sistema nervoso autônomo.

As células do músculo cardíaco são cilíndricas e têm ramificações que permitem a elas se conectarem umas às outras.

Essas ramificações conectam-se por meio de áreas especializadas denominadas discos intercalares.

As células do músculo cardíaco são muito menores do que as células do músculo esquelético e liso.

Esse músculo gera a contração e bombeia sangue para todo corpo.

As ramificações interconectadas das células do músculo cardíaco garantem que o bombeamento do coração seja feito de maneira coordenada.

ESTRUTURA

As células musculares cardíacas são estriadas, ramificadas e involuntárias.

Suas células são unidas em uma rede contínua, e não há nenhuma camada que as separe.

As membranas das células adjacentes são fusionadas em locais denominados discos intercalados, um sistema de comunicação nas áreas fusionadas impede a contração independente de uma célula.

Uma célula muscular cardíaca (cardiomiócito) possui cerca de 10 a 20 µm de extensão.

O citoplasma contém miofibrilas e mitocôndrias densamente agrupadas.

Essas fibrilas não correm estritamente paralela umas às outras, mas ramificam-se em um padrão complexo.

As células musculares cardíacas possuem um núcleo centralmente localizado.

A estrutura do sârcomero é semelhante a estrutura do músculo esquelético.

Os túbulos T são maiores e ramificados, enquanto o sistema L é menor em relação a estrutura do músculo cardíaco.

Além disso, os discos intercalares conectam as células cardíacas mecânica e eletricamente.

Os discos intercalares são encontrados exclusivamente no tecido cardíaco e possuem a função de transmitir os sinais de uma célula para outra, garantindo a sincronização da contração cardíaca e impedindo a separação dessas células durante o batimento cardíaco.

Nessas junções intercelulares encontram-se três especializações juncionais principais: zônula de adesão, desmossomos e junções comunicantes.

Quando a célula recebe o sinal para se contrair, todas as células vizinhas são estimuladas e se contraem juntas produzindo o batimento cardíaco.

O batimento cardíaco mantém um ritmo de cerca de 70 contrações por minuto, no entanto, a atividade de vários terminais nervosos pode levar o coração a aumentar ou diminuir o seu ritmo.

O músculo cardíaco requer um aporte contínuo de oxigênio para funcionar.

Se o suprimento de oxigênio for interrompido por apenas 30 segundos, as células musculares cardíacas começarão a morrer.

Tecido Muscular Liso

O músculo liso é involuntário.

Cada célula muscular lisa fusiforme contém um único núcleo situado ao centro, que adquire formato espiralado durante a contração da célula.

O sarcolema dessa célula apresenta grande quantidade de invaginações com aspecto e as dimensões das vesículas de pinocitose, denominadas cavéolas.

Estas possivelmente estão associadas ao transporte de íons Ca2+ para o citosol, necessários para desencadear o processo de contração.

As células musculares lisas, também denominadas fibras, não contêm filamentos finos e espessos bem arranjados e, portanto, não apresentam o padrão estriado encontrado no músculo esquelético e no músculo cardíaco.

As células musculares lisas estão interconectadas por junções comunicantes, as junções especializadas de comunicação entre as células.

Pequenas moléculas ou íons podem passar de uma célula para outra através dessas junções e, assim, estabelecer comunicação que regula a contração de todo o feixe ou folheto de músculo liso.

Embora os filamentos lisos do músculo liso tenham actina F e tropomiosina, não há troponina, cuja função é assumida pela calmodulina, que forma complexos com cálcio.

O músculo liso pode ser de dois tipos: multiunitário, no qual cada célula tem sua própria inervação, ou unitário (visceral), no qual os estímulos nervosos são transmitidos por meio do nexo (junções comunicantes) de uma célula muscular para outra adjacente.

ESTRUTURA

As células musculares lisas contêm um aparelho contrátil de filamentos intermediários de desmina e vimentina.

Sarcoplasma

O sarcoplasma é preenchido com filamentos finos, que formam parte do aparelho contrátil.

Os filamentos espessos de miosina estão dispersos por todo o sarcoplasma da célula muscular lisa.

São extremamente lábeis e tendem a ser despolimerizados e se perder durante a preparação do tecido.

Os componentes do aparelho contrátil nas células musculares lisas são os filamentos finos contêm actina, a isoforma da tropomiosina do músculo liso, e duas proteínas específicas do músculo liso, a caldesmona e a calponina.

Nenhuma troponina está associada à troponina está asssociada à tropomiosina do músculo liso.

A actina está envolvida na interação de geração de força com moléculas de miosina do músculo liso.

Contração do Músculo Liso

Para que ocorra a contração do músculo liso, os íons cálcio liberados das cavéolas permitem a fosforilação da calponina e essa proteína fosforilada não consegue impedir que haja contração.

Os íons cálcio também da calponina e essa proteína fosforilada não consegue impedir que haja contração.

Os íons cálcio também se ligam à calmodulina e o complexo Ca2+ -calmodulina liga-se à caldesmon, levando a expor o sítio ativo da actina e ativando a miosina quinase de cadeia leve, que fosforila uma das cadeias leves da miosina II, alterando sua conformação.

A fosforilação permite que a terminação livre da meromiosina leve seja liberada da molécula S1.

O ATP liga-se ao S1 e a interação resultante entre actina e miosina é semelhante à que ocorre no músculo esquelético (e cardíaco).

Enquanto houver íons cálcio e ATP disponíveis, a célula muscular lisa mantém-se contraída.

A contração da musculatura lisa estende-se por mais tempo, mas se desenvolve mais lentamente que a contração do músculo esquelético ou cardíaco.

É importante salientar que, ao contrário do músculo esquelético, no qual as moléculas de miosina II são reunidas de modo antiparalelo e o centro do filamento espesso tem apenas meromiosina leve em seu meio, no músculo liso existem cabeças de meromiosina pesada, mesmo na parte intermediária do filamento espesso.

Em razão dessa disposição das moléculas de miosina II no filamento espesso, a contração dura mais tempo que a do músculo esquelético.

As células musculares lisas são conectadas por junções comunicantes, de modo que o estímulo inicial que alcança algumas das células de um feixe se transmite rapidamente por muitas outras.

O grau de controle do sistema nervoso autônomo sobre os músculos lisos é muito variável.

A musculatura lisa do sistema digestório se contrai em ondas lentas; por outro lado, o músculo liso da íris do globo ocular se contrai ou relaxa de modo muito rápido e preciso.

Assim, o diâmetro da pupila se adapta com extrema rapidez às variações da intensidade luminosa.

O músculo liso é capaz de uma resposta regenerativa mais eficiente.

Ocorrendo lesão, as células musculares lisas que permanecem viáveis entram em mitose e reparam o tecido destruído.

Na regeneração do tecido muscular liso da parede dos vasos sanguíneos, há também a participação dos pericitos, que se multiplicam por mitose e originam novas células musculares lisas.

Fonte: Wikipédia, a enciclopédia livre.