terça-feira, 25 de junho de 2024

Bateria (eletricidade)

 

Bateria (eletricidade)

Uma bateria é um aparelho ou dispositivo que transforma em corrente elétrica a energia desenvolvida numa reação química.

Cada célula de uma bateria contém um terminal positivo (cátodo) e um terminal negativo (ânodo). O processo químico de troca de elétrons é conhecido como oxirredução.

Diferença entre bateria e pilha

Existe uma diferença básica entre bateria e pilha.

Bateria

A bateria é formada por várias pilhas em série ou paralelas.

As baterias podem ser compostas de diversos materiais, tamanhos e potência. Elas podem caber dentro de um relógio ou fornecer energia a um veículo elétrico.

De acordo com estimativas, a indústria de produção de baterias movimenta US$48 bilhões de dólares por ano.

Bateria de níquel-cádmio

É composta pelos elementos químicos: níquel (Ni) e cádmio (Cd). Foi usada em câmeras digitais, câmeras de vídeo e telefones celulares. Por ter problemas de efeito memória, foi substituída pela bateria de íon-lítio.

Bateria de chumbo

Também chamada de bateria automotiva, é responsável por manter veículos automotivos e camiões com energia, mesmo quando desligados. É composta por chumbo e uma solução aquosa de ácido sulfúrico (H2SO4).

Pilha

Pilha elétrica, célula galvânica, pilha galvânica ou ainda pilha voltaica é um dispositivo onde têm-se dois elétrodos que são constituídos geralmente de metais diferentes, que fornecem a superfície na qual ocorrem as reações de oxidação e redução. Estes elétrodos são postos em dois compartimentos separados, imersos por sua vez em um meio contendo íons em concentrações conhecidas e separados por uma placa ou membrana porosa, podendo ser composta por argila não vitrificada, porcelana ou outros materiais. 

As duas metades desta célula eletroquímica são chamadas compartimentos e têm por finalidade separar os dois reagentes participantes da reação de oxidorredução. Caso contrário, os elétrons seriam transferidos diretamente do agente redutor para o agente oxidante. Finalmente, os dois elétrodos são conectados por um circuito elétrico, localizado fora da célula, denominado circuito externo, garantindo o fluxo de elétrons entre os elétrodos.

As pilhas não devem ser confundidas com as baterias. Enquanto a primeira apenas converte energia química em energia elétrica, a segunda faz a interconversão entre energia química e energia elétrica.

É importante saber que na pilha, os elétrons fluem do ânodo para o cátodo, sendo que o sentido da corrente elétrica, frequentemente utilizado na Física, se dá do cátodo para o ânodo.

História

No século XVII, Otto von Guericke inventou a primeira máquina para produzir eletricidade estática.

Na segunda metade do século XVIII, Luigi Galvani começou a pesquisar sobre a eletricidade animal. Após dez anos de pesquisa publicou Sobre as forças de eletricidade nos movimentos musculares, onde concluía que os músculos armazenavam eletricidade (do mesmo modo que uma garrafa de Leiden) e os nervos conduziam essa eletricidade. Durante a dissecação de um anfíbio sobre uma mesa onde existia uma máquina eletrostática o assistente de Galvani tocou com o bisturi o nervo interno da coxa do animal, sendo observadas contrações musculares que ocorreram devido ao tecido do animal ter sido tocado por dois metais diferentes.

No século XVIII, Alessandro Volta, pondo em prática uma experiência de Luigi Galvani, descobriu algo curioso. Verificou que, se dois metais diferentes forem postos em contacto um com o outro, um dos metais fica ligeiramente negativo e o outro ligeiramente positivo. Estabelece-se entre eles uma diferença de potencial ou seja, uma tensão elétrica. Usando esta experiência como base, concebeu uma pilha, a que deu o nome de pilha voltaica.

A pilha era composta por discos de zinco e de cobre empilhados e separados por pedaços de tecido embebidos em solução de ácido sulfúrico. Esta pilha produzia energia elétrica sempre que um fio condutor era ligado aos discos de zinco e de cobre colocados na extremidade da pilha.

Em 1812, Davy produziu um arco elétrico usando elétrodos de carvão mineral ligados a uma bateria de muitas células.

Funcionamento de uma pilha

O modelo mais conhecido é a Pilha de Daniell, inventada pelo químico britânico John Daniell, em 1836, quando o avanço da telegrafia criou a necessidade urgente de uma fonte de corrente elétrica confiável e estável. Essa pilha consiste na imersão de um fio de zinco numa solução aquosa de sulfato de zinco, assim como um fio de cobre em solução aquosa de sulfato de cobre(II), mantendo os dois metais interligados eletricamente por um fio.

Os fios de zinco e de cobre são denominados elétrodos e fornecem a superfície na qual ocorrem as reações de oxidação e de redução. Se os elétrodos de zinco e o cobre forem ligados entre si, por meio de um circuito externo, haverá um escoamento de elétrons através desse circuito, o fluxo de elétrons vai da espécie que está sendo oxidada (ânodo) para a espécie que se está reduzindo (cátodo).

Logo,

Ânodo = local onde ocorre oxidação, é o polo negativo da pilha.

Cátodo = local onde ocorre redução, é o polo positivo da pilha.

Para descobrir qual das espécies químicas será o ânodo e qual será o cátodo, devemos recorrer à tabela de potencial padrão (Eº), que mede o poder de puxar elétrons de um único elétrodo, onde contém o valor do potencial de cada espécie química, em volts (V).

Através dos dados da tabela de potencial padrão, podemos determinar que o cobre possui um caráter redutor maior que o zinco, por esse motivo o cobre será reduzido, enquanto o zinco será oxidado.

Segundo Atkins e Jones, para que os elétrons passem dos átomos de Zn para os íons Cu 2+

e permitam que a reação espontânea ocorra, eles tem de passar por um fio que servirá de circuito externo e depois pelo elétrodo de Cu até a solução de sulfato de cobre (II). Os íons

Cu2+ convertem-se em átomos de Cu no cátodo, simultaneamente, os átomos de Zn convertem-se em íons Zn2+ no ânodo. 

À medida que se vai ocorrendo a redução, a solução no cátodo adquire carga negativa (excesso de elétrons no meio), enquanto a solução no ânodo começa a desenvolver carga positiva(ausência de elétrons no meio). Para que esse processo não cause a interrupção no fluxo de elétrons, a pilha pode conter uma parede permeável ou uma ponte salina (com cloreto de potássio, os íons Cl- migram em direção ao ânodo e os íons K+ migram em direção ao cátodo) que fazem o contato entre as duas células. As reações de elétrodo e a reação da célula são: ânodo : Zn (s) Zn2+(aq) + 2 e–(aq)

Cátodo : 2 e– + Cu2+(aq) Cu(s)

Reação Global: Zn(s) + Cu2+(aq) Zn2+(aq) + Cu(s)

Observações

O metal mais nobre (menos reativo) sofre sempre redução.

Ânodo: Nele ocorre a oxidação = polo negativo da pilha;

Cátodo: Nele ocorre a redução = polo positivo da pilha;

A substância que sofre redução denomina-se agente oxidante;

A substância que sofre oxidação denomina-se agente redutor.

Lembrando também, que:

O ânodo corrói (sai da lâmina e vai para a solução);

O cátodo se deposita (sai da solução e vai para a lâmina);

Uma "pilha recarregável" (nome impróprio) é na verdade uma bateria.

Origem: Wikipédia, a enciclopédia livre.

Aviso!

Espaço reservado para a informação academica do assunto. Conhecimento aplicado no livro Eternidade 1 - Fatos 2020 e 2021.

Com o tempo posso preencher esse espaço adicionando informação e novos direcionamentos para meus livros.

Tentarei facilitar, mostrando o significado e o caminho, para que consiga entender com base científica tudo sobre a Eternidade 1.

Você tem que saber ou pelo menos conhecer, para aplicar o conhecimento na realidade.

Se chegou até aqui, peço desculpas pela falta de informações.

Obrigado pela atenção, agradeço a Deus, tenho esperança no futuro melhor.

Em construção...

Marcadores: Bateria (eletricidade), Capítulo 33 - Projeto Viagens na velocidade da luz, Eternidade 1 - Fatos 2020 e 2021, Estudos acadêmicos.




Azoto

 

Azoto

O azoto, nitrogénio (português europeu) ou nitrogênio (português brasileiro) é um elemento químico com símbolo N, número atómico 7 e de massa atómica 14,00674 u (7 protões e 7 neutrões, com adição da pequena massa dos 7 eletrões), representado no grupo (ou família) 7 (antigo VO) da tabela periódica.

 Pertence à família dos pnicogénios. O nitrogénio foi descoberto pelo médico escocês Daniel Rutherford em 1772, como componente separável do ar. Em condições normais forma um gás diatómico (N2 ), incolor, inodoro, insípido e principalmente inerte, não participando da combustão e nem da respiração. Condensa a aproximadamente 77 K (-196 °C) e solidifica a aproximadamente 63 K (-210 °C). que constitui 78,08% do volume do ar atmosférico.

 Embora o nitrogênio dentro dos solos e da vegetação terrestre seja amplamente considerado proveniente da atmosfera, rochas resistidas contribui com 6% a 17% da provisão total de nitrogênio terrestre, ou 11 a 18 teragramas de nitrogênio anualmente.

O nitrogénio é um elemento comum no Universo. Estima-se que seja o sétimo elemento mais abundante na Via Láctea e no Sistema Solar. É sintetizado pela fusão de carbono e hidrogénio nas supernovas. Devido à volatilidade do nitrogénio elementar e dos seus compostos mais usuais, o nitrogénio é muito menos comum nos planetas rochosos do sistema solar interior, para além de ser, no geral, um elemento relativamente raro na Terra. Contudo, da mesma forma que na Terra, o nitrogénio e os compostos do nitrogénio possuem uma grande presença na atmosfera dos planetas e satélites que o têm. O nitrogênio no manto provavelmente existe desde a formação inicial do planeta.

Muitos compostos de importância industrial, como amoníaco, o ácido nítrico, os nitratos orgânicos (propelentes e explosivos), bem como cianetos, contêm nitrogénio. A ligação extremamente forte de nitrogénio elementar domina a química do nitrogénio, tornando difícil tanto para os organismos como para a indústria transformar o N2 em compostos úteis, libertando grandes quantidades de energia quando estes compostos são queimados ou se degradam em gás nitrogénio. O amoníaco e os nitratos produzidos sinteticamente são importantes fertilizantes industriais. Os nitratos fertilizantes são contaminantes que desempenham um papel significativo na eutrofização dos sistemas aquáticos.

Além de seus principais usos como fertilizantes e stocks de energia, o nitrogénio forma compostos orgânicos versáteis. O nitrogénio constitui parte de materiais tão diversos quanto o kevlar e a supercola de cianoacrilato. O nitrogénio é parte integrante das moléculas de todas as grandes classes de medicamentos, incluindo os antibióticos. Muitos medicamentos imitam ou são pró-fármacos de moléculas de sinalização que contêm nitrogénio. Por exemplo, nitroglicerina e nitroprussiato, ambos nitratos orgânicos, controlam a pressão sanguínea ao metabolizar-se em óxido nítrico natural. Os alcaloides vegetais (que são amiúde substâncias de defesa) contêm nitrogénio por definição.

Portanto, muitos fármacos importantes que contêm nitrogénio, como a cafeína e a morfina, são ou alcaloides ou imitadores sintéticos que actuam (da mesma forma que muitos alcaloides vegetais) sobre os receptores dos neurotransmissores dos animais (por exemplo, as anfetaminas sintéticas).

O nitrogénio está presente em todos os seres vivos. É um elemento constituinte do aminoácidos e, portanto, das proteínas, bem como dos ácidos nucleicos (o ADN e o ARN). O corpo humano possui cerca de 3% do seu peso em nitrogénio. Trata-se do quarto elemento mais abundante no corpo depois do oxigénio, carbono e hidrogénio. O ciclo de nitrogénio descreve o movimento deste elemento desde a atmosfera para a biosfera e os compostos orgânicos e o retorno à atmosfera novamente.

Considera-se que foi descoberto formalmente por Daniel Rutherford em 1772 ao determinar algumas de suas propriedades. Entretanto, pela mesma época, também se dedicou ao seu estudo Scheele que o isolou.

História

O nitrogênio (do latim nitrogenium e este do grego νίτρον = nitro, e -genio, da raiz grega γεν = gerar) considera-se que foi descoberto formalmente por Daniel Rutherford em 1772 ao determinar algumas de suas propriedades. Entretanto, pela mesma época, também se dedicaram ao seu estudo Scheele que o isolou, Cavendish, e Priestley. O nitrogênio é um gás tão inerte que Lavoisier se referia a ele como azote, que é uma palavra formada pelas raizes gregas a (negativo) e zote (vivo), ou seja, sem-vida, devido ao fato de que ele não é utilizado para a vida na Terra como o oxigênio. Em francês, o termo azote é utilizado no lugar de nitrogênio.

Alguns anos depois, em 1790, foi chamado de nitrogénio, por Jean Antoine Chaptal, que significa “formador de salitre”.

Foi classificado entre os gases permanentes desde que Faraday não conseguiu torná-lo líquido a 50 atm e -110 °C. Mais tarde, em 1877, Pictet e Cailletet conseguiram liquefazê-lo.

Alguns compostos de nitrogênio já eram conhecidos na Idade Média: os alquimistas chamavam de aqua fortis o ácido nítrico e aqua regia a mistura de ácido nítrico e clorídrico, conhecida pela sua capacidade de dissolver o ouro.

Características principais

Ocorre como um gás inerte (N2 ), não metal, incolor, inodoro e insípido, constituindo cerca de 4/5 da composição do ar atmosférico, não participando da combustão e nem da respiração. Como elemento (N) tem uma elevada eletronegatividade (3 na escala de Pauling) e 5 electrões no nível mais externo (camada de valência), comportando-se como ião trivalente na maioria dos compostos que forma. Condensa a aproximadamente 77 K (-196 °C) e solidifica a aproximadamente 63 K (-210 °C).

O nitrogénio é o principal componente da atmosfera terrestre. Este elemento chega ao solo através de compostos orgânicos (restos vegetais e animais) e/ou inorgânicos. Sua fixação pode ser biológica (simbiótica ou não) ou por descargas elétricas. No solo o N se encontra na forma orgânica ou inorgânica, podendo se mudar de forma (ou vice-versa) pelo fenômeno da mineralização ou imobilização.

Aplicações

A mais importante aplicação comercial do nitrogênio é na obtenção do gás amoníaco pelo processo Haber. O amoníaco é usado, posteriormente, para a fabricação de fertilizantes e ácido nítrico.

É usado, devido a sua baixa reatividade, como atmosfera inertizada em tanques de armazenamento de óleos vegetais e animais. Também é usado em tanques de líquidos explosivos, durante a fabricação de componentes eletrônicos (transistores, diodos, circuitos integrados, etc.) e na fabricação do aço inoxidável. O uso de nitrogênio como atmosfera inerte geralmente é feito com a substituição do ar de um ambiente fechado por nitrogênio puro (a pureza necessária vai depender da criticidade do processo) e consequente diminuição nessa atmosfera dos contaminantes e do oxigênio presente no ar.

O nitrogênio líquido, obtido pela destilação do ar líquido, se usa em criogenia, já que na pressão atmosférica condensa a -196 °C.

É usado como fator refrigerante, para o congelamento e transporte de alimentos, conservação de corpos e células reprodutivas sexuais, masculinas e femininas ou quaisquer outras amostras biológicas.

Entre os sais do ácido nítrico estão incluídos importantes compostos como o nitrato de potássio (nitro ou salitre empregado na fabricação de pólvora) e o nitrato de amônio como fertilizante.

Os compostos orgânicos de nitrogênio como a nitroglicerina e o trinitrotolueno (TNT) são muito explosivos. A hidrazina e seus derivados são usados como combustível em foguetes.

Na medicina nuclear, o 13N (lê-se nitrogênio 13), radioativo com emissão de positrão, é usado no exame PET.

Na indústria automobilística é utilizado para inflar pneus de alto desempenho.

Na vulcanologia, pesquisadores descobriram que analisar isótopos de nitrogênio  "agrupados" é uma maneira útil de monitorar a atividade de vulcões.

O nitrogênio como adubo

O nitrogênio é o elemento que as plantas necessitam em maior quantidade. É um macronutriente primário ou nobre. No entanto, devido à multiplicidade de reações químicas e biológicas, à dependência das condições ambientais e ao seu efeito no rendimento das culturas, o nitrogênio é também o elemento que apresenta maiores dificuldades de manejo na produção agrícola mesmo em propriedades tecnicamente orientadas.

As formas preferenciais de absorção de nitrogênio pelas plantas são a amônia (NH4+) e o nitrato (NO3-).

Compostos nitrogenados simples, como ureia e alguns aminoácidos, também podem ser absorvidos, mas são poucos encontrados na forma livre no solo.

Mas, apesar de ser o nutriente mais abundante da atmosfera terrestre, o N não figura como constituinte de qualquer rocha terrestre. Talvez, seja por este motivo ele é o elemento mais caro dos fertilizantes, pois, para sua formação são necessárias diversas reações químicas, as quais necessitam de muita energia. Tal afirmação é justificada pelo fato da difícil síntese e alto custo energético da formação do NH3.

As formas em que o N se apresenta nos adubo nitrogenados são: Nítricas (Ex. Nitrato de Cálcio), amoniacal (Ou ambas como e o caso do Nitrato de Amônia), orgânica e amídica (Uréia). A concentração de N nos adubos podem variar desde 82% na amônia anidra até alguns décimo de 1% nos adubos orgânicos.

Abundância e obtenção

O nitrogênio é o componente principal da atmosfera terrestre (78,1% em volume). É obtido, para usos industriais, pela destilação do ar líquido ou pelo enriquecimento através de filtros moleculares. O elemento está presente na composição de substâncias excretadas pelos animais, usualmente na forma de ureia e ácido úrico.

Tem-se observado compostos que contém nitrogênio no espaço exterior. O isótopo 14N se cria nos processos de fusão nuclear das estrelas.

Compostos

Com o hidrogênio forma o amoníaco ( NH3) e a hidrazina ( N2H4 ). O amoníaco líquido — anfótero como a água — atua como uma base em solução aquosa formando íons amônio ( NH4+). O mesmo amoníaco comporta-se como um ácido em ausência de água, cedendo um próton a uma base, dando lugar ao ânion amida (NH2-). Também se conhece largas cadeias e compostos cíclicos de nitrogênio, porém, são muito instáveis.

Com o oxigênio forma vários óxidos como o óxido nitroso ( N2O) ou gás hilariante, o óxido nítrico (NO) e o dióxido de nitrogênio ( NO2 ), estes dois últimos são representados genericamente por NOx e são produtos de processos de combustão, contribuindo para o aparecimento de contaminantes (smog fotoquímico). Outros óxidos são o trióxido de dinitrogênio ( N2O3 ) e o pentóxido de dinitrogênio (N2O5 ), ambos muito instáveis e explosivos, cujos respectivos ácidos são o ácido nitroso (HNO2 ) e o ácido nítrico (HNO3 ) que, por sua vez, formam os sais nitritos e nitratos.

Papel biológico

O azoto é o componente essencial dos aminoácidos e dos ácidos nucleicos, vitais para os seres vivos. As leguminosas são capazes de desenvolver simbiose com certas bactérias do solo chamadas de rizóbios, estas bactérias absorvem o azoto diretamente do ar, sendo este transformado em amoníaco que logo é absorvido pela planta. Na planta o amoníaco é reduzido a nitrito pela enzima nitrito redutase e logo em seguida é reduzido a nitrato pela enzima nitrato redutase. O nitrato é posteriormente utilizado pela planta para formar o grupo amino dos aminoácidos das proteínas que, finalmente, se incorporam à cadeia trófica. Um bom exemplo deste processo é observado na soja, sendo esta uma cultura que dispensa adubação nitrogenada. (veja: ciclo do nitrogênio). Em 2015, pesquisadores da Universidade Cornell desenvolveram um forma de vida livre de oxigênio com base em metano chamada "azotosoma" que, teoricamente, pode existir no ambiente frio e agreste da lua gigante do planeta Saturno, Titã, desafiando a ideia de que a água é necessária à vida.

Isótopos

Há dois isótopos estáveis do azoto: 14N e 15N. O mais comum é o 14N, com uma abundância relativa de 99,634%, sendo o restante preenchido pelo 15N.

No universo, o 14N é produzida pelo ciclo carbono-azoto das estrelas.

Dos dez isótopos artificiais do nitrogênio (sintetizados em laboratório), o 13N tem uma vida média de nove minutos enquanto que os demais isótopos, da ordem de segundos ou menos.

As reações biológicas de nitrificação e desnitrificação contribuem, de maneira determinante, na dinâmica do azoto no solo, quase sempre produzindo um enriquecimento em 15N do substrato.

Precauções

Os fertilizantes azotados são uma poderosa fonte de contaminação do solo e das águas. Os compostos que contêm iões cianeto formam sais extremadamente tóxicos e são mortais para numerosos animais, entre os quais os mamíferos.

Origem: Wikipédia, a enciclopédia livre.

Aviso!

Espaço reservado para a informação acadêmica do assunto. Conhecimento aplicado no livro Eternidade 1 - Fatos 2020 e 2021.

Com o tempo posso preencher esse espaço adicionando informação e novos direcionamentos para meus livros.

Tentarei facilitar, mostrando o significado e o caminho, para que consiga entender com base científica tudo sobre a Eternidade 1.

Você tem que saber ou pelo menos conhecer, para aplicar o conhecimento na realidade.

Se chegou até aqui, peço desculpas pela falta de informações.

Obrigado pela atenção, agradeço a Deus, tenho esperança no futuro melhor.

Em construção...

Marcadores: Azoto, Capítulo 33 - Projeto Viagens na velocidade da luz, Eternidade 1 - Fatos 2020 e 2021, Estudos acadêmicos.





Atrito

 

Atrito

O atrito é a força que resiste ao movimento relativo de superfícies sólidas, camadas de fluido e elementos materiais que deslizam uns contra os outros. Existem vários tipos de atrito:

O atrito seco é uma força que se opõe ao movimento lateral relativo de duas superfícies sólidas em contato. 

O atrito seco é subdividido em atrito estático entre superfícies imóveis, e atrito cinético entre superfícies móveis. Com exceção do atrito atômico ou molecular, o atrito seco geralmente surge da interação de características de superfície, conhecidas como asperezas.

O atrito de fluido descreve o atrito entre as camadas de um fluido viscoso que se movem umas em relação às outras.

O atrito lubrificado é um caso de atrito de fluido em que um fluido lubrificante separa duas superfícies sólidas.

A fricção da pele é um componente do arrasto, a força que resiste ao movimento de um fluido pela superfície de um corpo.

O atrito interno é a força que resiste ao movimento entre os elementos que constituem um material sólido enquanto ele sofre deformação.

Quando as superfícies em contato se movem em relação uma à outra, o atrito entre as duas superfícies converte energia cinética em energia térmica (isto é, converte trabalho em calor). Essa propriedade pode ter consequências dramáticas, conforme ilustrado pelo uso de fricção criada ao esfregar pedaços de madeira para iniciar um incêndio. A energia cinética é convertida em energia térmica sempre que ocorre movimento com atrito, por exemplo, quando um fluido viscoso é agitado. Outra consequência importante de muitos tipos de atrito pode ser o desgaste , que pode levar à degradação do desempenho ou danos aos componentes. O atrito é um componente da ciência da tribologia.

O atrito é desejável e importante para fornecer tração para facilitar o movimento em terra. A maioria dos veículos terrestres depende do atrito para acelerar, desacelerar e mudar de direção. Reduções repentinas na tração podem causar perda de controle e acidentes.

O atrito não é em si uma força fundamental. O atrito seco surge de uma combinação de adesão entre superfícies, rugosidade da superfície, deformação da superfície e contaminação da superfície. A complexidade dessas interações torna o cálculo do atrito a partir dos primeiros princípios impraticável e exige o uso de métodos empíricos para análise e desenvolvimento de teoria.

O atrito é uma força não conservativa — o trabalho realizado contra o atrito depende do caminho. Na presença de atrito, alguma energia cinética é sempre transformada em energia térmica, portanto a energia mecânica não é conservada.

Coeficiente de atrito

O coeficiente de atrito, geralmente representado pela letra μ, é uma grandeza adimensional (não apresenta unidade de medida) que relaciona a força de atrito e a força de compressão entre dois corpos. Esse coeficiente depende dos materiais envolvidos; Por exemplo, o coeficiente de atrito entre asfalto e borracha é alto enquanto o coeficiente entre gelo e aço é baixo.

O coeficiente de atrito entre duas superfícies é uma grandeza empírica, ou seja, ela é determinada a partir de dados experimentais, e por isso representa uma predição aproximada da relação entre a força de atrito e a força de compressão.

Pode ser diferenciado em coeficiente de atrito dinâmico ou de atrito estático de acordo com a situação na qual se determina tais coeficientes:

Coeficiente de atrito dinâmico ou cinético: presente a partir do momento que as superfícies em contato apresentam movimento relativo. Relaciona a força de atrito cinético presente nos corpos que se encontram em movimento relativo com o módulo das forças normais que neles atuam. Representado por μc.

Aviso!

Espaço reservado para a informação acadêmica do assunto. Conhecimento aplicado no livro Eternidade 1 - Fatos 2020 e 2021.

Com o tempo posso preencher esse espaço adicionando informação e novos direcionamentos para meus livros.

Tentarei facilitar, mostrando o significado e o caminho, para que consiga entender com base científica tudo sobre a Eternidade 1.

Você tem que saber ou pelo menos conhecer, para aplicar o conhecimento na realidade.

Se chegou até aqui, peço desculpas pela falta de informações.

Obrigado pela atenção, agradeço a Deus, tenho esperança no futuro melhor.

Em construção...

Origem: Wikipédia, a enciclopédia livre.

Marcadores: Atrito, Capítulo 33 - Projeto Viagens na velocidade da luz, Eternidade 1 - Fatos 2020 e 2021, Estudos acadêmicos.



Apolo

 



Apolo

Apolo (em grego: Ἀπόλλων; romaniz.: Apóllōn, ou Ἀπέλλων, transl. Apellōn) é uma das divindades principais da mitologia greco-romana, um dos deuses olímpicos. Filho de Zeus e Leto, e irmão gêmeo de Ártemis, possuía muitos atributos e funções, e possivelmente depois de Zeus foi o deus mais influente e venerado de todos os da Antiguidade clássica. 

As origens de seu mito são obscuras, mas no tempo de Homero já era de grande importância, sendo um dos mais citados na Ilíada. Era descrito como o deus da divina distância, que ameaçava ou protegia desde o alto dos céus, sendo identificado como o sol e a luz da verdade. 

Fazia os homens conscientes de seus pecados e era o agente de sua purificação ritual; presidia sobre as leis da Religião e sobre as constituições das cidades, era o símbolo da inspiração profética e artística, sendo o patrono do mais famoso oráculo da Antiguidade, o Oráculo de Delfos, e líder das musas. 

Era temido pelos outros deuses e somente seu pai e sua mãe podiam contê_lo. Era o deus da morte súbita, das pragas e doenças, mas também o deus da cura e da proteção contra as forças malignas. 

Além disso era o deus da Beleza, da Perfeição, da Harmonia, do Equilíbrio e da Razão, o iniciador dos jovens no mundo dos adultos, estava ligado à Natureza, às ervas e aos rebanhos, e era protetor dos pastores, marinheiros e arqueiros. Embora tenha tido inúmeros amores, foi infeliz nesse terreno, mas teve vários filhos.

Foi representado numerosas vezes desde a Antiguidade até o presente, geralmente como um homem jovem, nu e imberbe, no auge de seu vigor, às vezes com um manto, um arco e uma aljava de flechas, ou uma lira, e com algum de seus animais simbólicos, como a serpente, o corvo ou o grifo.

Apolo foi identificado sincreticamente com grande número de divindades maiores e menores nos seus vários locais de culto, e sobreviveu veladamente ao longo do florescimento do cristianismo primitivo, que se apropriou de vários de seus atributos para adornar seus próprios personagens sagrados, como Cristo e o arcanjo São Miguel. 

Entretanto, na Idade Média Apolo foi identificado pelos cristãos muitas vezes com o Demônio. Mas desde a associação de Apolo com o poder profano pelo imperador romano Augusto se originou um poderoso imaginário simbólico de sustentação ideológica do imperialismo das monarquias e da glória pessoal dos reis e príncipes. 

Seu mito tem sido trabalhado ao longo dos séculos por filósofos, artistas e outros intelectuais para a interpretação e ilustração de uma variedade de aspectos da vida humana, da sociedade e de fenômenos da Natureza, e sua imagem continua presente de uma grande variedade de formas nos dias de hoje.

Até mesmo seu culto, depois de um olvido de séculos, foi recentemente ressuscitado por correntes do neopaganismo.

Aviso!

Espaço reservado para a informação acadêmica do assunto. Conhecimento aplicado no livro Eternidade 1 - Fatos 2020 e 2021.

Com o tempo posso preencher esse espaço adicionando informação e novos direcionamentos para meus livros.

Tentarei facilitar, mostrando o significado e o caminho, para que consiga entender com base científica tudo sobre a Eternidade 1.

Você tem que saber ou pelo menos conhecer, para aplicar o conhecimento na realidade.

Se chegou até aqui, peço desculpas pela falta de informações.

Obrigado pela atenção, agradeço a Deus, tenho esperança no futuro melhor.

Em construção...

Origem: Wikipédia, a enciclopédia livre.

Marcadores: Apolo, Capítulo 33 - Projeto Viagens na velocidade da luz, Eternidade 1 - Fatos 2020 e 2021, Estudos acadêmicos.