terça-feira, 25 de junho de 2024

Compressor

 

Compressor

O compressor é um equipamento industrial concebido para aumentar a pressão de um fluido em estado gasoso (ar, vapor de água, hidrogênio, etc.. Normalmente, conforme a equação de Clapeyron, a compressão de um gás também provoca o aumento de sua temperatura.

Tipos

Os compressores podem ser classificados em 2 tipos principais, conforme seu princípio de operação:

Compressores de deslocamento positivo (ou Estáticos): Estes são subdivididos ainda em Alternativos ou Rotativos.

Nos compressores alternativos a compressão do gás é feita em uma câmara de volume variável por um pistão, ligado a um mecanismo biela-manivela similar ao de um motor alternativo. Quando o pistão no movimento ascendente comprime o gás a um valor determinado, uma válvula se abre deixando o gás escapar, praticamente com pressão constante. Ao final do movimento de ascensão, a válvula de exaustão se fecha, e a de admissão se abre, preenchendo a câmara a medida que o pistão se move. Nos compressores rotativos, um rotor é montado dentro de uma carcaça com uma excentricidade (desnivelamento entre o centro do eixo do rotor e da carcaça). No rotor são montadas palhetas móveis, de modo que a rotação faz as palhetas se moverem para dentro e para fora de suas ranhuras. O gás contido entre duas palhetas sucessivas é comprimido a medida o volume entre elas diminui devido à rotação e à excentricidade do rotor. Tais compressores também são aplicados em refrigeração (ver: Motor Schukey).

Compressores de Dinâmicos:Estes são subdivididos ainda em centrífugos ou axiais.

Os compressores dinâmicos ou turbocompressores possuem dois componentes principais: impelidor e difusor. O impelidor é um componente rotativo munido de pás que transfere ao gás a energia recebida de um acionador. Essa transferência de energia se faz em parte na forma cinética e em outra parte na forma de entalpia. Posteriormente, o escoamento estabelecido no impelidor é recebido por um componente fixo denominado difusor, cuja função é promover a transformação da energia cinética do gás em entalpia, com conseqüente ganho de pressão. Os compressores dinâmicos efetuam o processo de compressão de maneira contínua, e portanto correspondem exatamente ao que se denomina, em termodinâmica, um volume de controle.

Os compressores atualmente são utilizados em diversas aplicações. A mais simples é a compressão de ar, seja para acionamento e controle de válvulas, alimentação de motores ou turbinas a gás, até aplicações mais complexas, como o transporte de gás natural, injeção de CO2 em reservatórios subterrâneos, ou compressão de hidrocarbonetos em ciclos de refrigeração.

Quando são aplicados na alimentação forçada de motores, os supercompressores ou turbocompressores são chamados de sistemas de indução forçada. Eles comprimem o ar que flui para o motor. A principal diferença entre um turbocompressor e um compressor é a fonte de energia. Em um compressor, há uma correia que o conecta diretamente ao motor. Ele obtém sua energia da mesma forma como o alternador do carro por exemplo. Um turbocompressor e acionado por uma turbina, que retira energia dos gases de escape do motor e montada no mesmo eixo que o compressor.

Compressores rotativos

Nos compressores rotativos, os gases são comprimidos por elementos giratórios. Outras das particularidades destes tipos de compressores são por exemplo as menores perdas mecânicas por atrito, pois dispensam um maior número de peças móveis, a menor contaminação de ar com óleo lubrificante, a ausência de reações variáveis sobre as fundações que provocam vibrações, o fato de a compressão ser feita de um modo continuo e não intermitente, como sucede nos alternativos e a ausência de válvulas de admissão e de descarga que diminui as perdas melhorando o rendimento volumétrico. Outro aspecto muito importante, para os diferentes tipos, prende-se com a economia de energia, com os rendimentos volumétrico, associados a fugas, e mecânico, associado a movimentos relativos entre as peças que constituem a máquina, e com a manutenção dos mesmos.

Compressores de parafusos

Esse tipo de compressor possui dois rotores em forma de parafusos que giram em sentido contrario, mantendo entre si uma condição de engrenamento. A conexão do compressor com o sistema se faz através das aberturas de sucção e descarga, diametralmente opostas: O gás penetra pela abertura de sucção e ocupa os intervalos entre os filetes dos rotores. A partir do momento em que há o engrenamento de um determinado filete, o gás nele contido fica encerrado entre o rotor e as paredes da carcaça. A rotação faz então com que o ponto de engrenamento vá se deslocando para a frente, reduzindo o espaço disponível para o gás e provocando a sua compressão. Finalmente, é alcançada a abertura de descarga, e o gás é liberado. De acordo com o tipo de acesso ao seu interior, os compressores podem ser classificados em herméticos, semi-herméticos ou abertos. A categoria dos compressores de parafuso pode também ser sub-dividida em compressores de parafuso duplo e simples. Os compressores de parafuso podem também ser classificados de acordo com o número de estágios de compressão, com um ou dois estágios de compressão (sistemas compound).

Compressores de parafusos de baixa pressão

O principio de funcionamento é o mesmo do compressor de parafuso, eles trabalham com pressões iguais ao soprador lóbulo, a única diferença que os rotores têm uma cobertura especial de teflon para garantir menores folgas e ausência de contato do óleo com o ar, esses tipos de sopradores são isentos de óleo e com eficiência superior ao lóbulo (Roots), em pressões mais altas sua vida útil é superior.

Compressores de parafusos simples

O compressor de parafuso simples, consiste num elemento cilíndrico com ranhuras helicoidais, acompanhado por duas rodas planas dispostas lateralmente e girando em sentidos opostos. O parafuso gira com uma certa folga dentro de uma carcaça composta de uma cavidade cilíndrica. Esta contém duas cavidades laterais onde se alojam as rodas planetárias. O parafuso é acionado pelo motor, e está encarregado de acionar as duas rodas. O processo de compressão ocorre tanto na parte superior como na inferior do compressor. Com isto consegue-se aliviar a carga radial sobre os mancais, de modo a que a única carga que atua sobre os mesmos, além daquela resultante do próprio peso, é atuante sobre os eixos das rodas planetárias, resultante da pressão do gás nos dentes das mesmas durante o engrenamento.

Origem: Wikipédia, a enciclopédia livre.

Aviso!

Espaço reservado para a informação acadêmica do assunto. Conhecimento aplicado no livro Eternidade 1 - Fatos 2020 e 2021.

Com o tempo posso preencher esse espaço adicionando informação e novos direcionamentos para meus livros.

Tentarei facilitar, mostrando o significado e o caminho, para que consiga entender com base científica tudo sobre a Eternidade 1.

Você tem que saber ou pelo menos conhecer, para aplicar o conhecimento na realidade.

Se chegou até aqui, peço desculpas pela falta de informações.

Obrigado pela atenção, agradeço a Deus, tenho esperança no futuro melhor.

Em construção...

Marcadores: Compressor, Capítulo 33 - Projeto Viagens na velocidade da luz, Eternidade 1 - Fatos 2020 e 2021, Estudos acadêmicos.




Combustão

 

Combustão

Combustão ou queima é uma reação química exotérmica (há exceções) entre uma substância (o combustível) e um gás (o comburente), geralmente o oxigênio, para liberar calor e luz. Durante a reação de combustão são formados diversos produtos resultantes da combinação dos átomos dos reagentes. No caso da queima em ar de compostos orgânicos (metano, propano, gasolina, etanol, diesel, etc) são formados centenas de compostos, por exemplo CO2, CO, H2O, H2,CH4, NOx,SOx, fuligem, etc, sendo que alguns desses compostos causam a chuva ácida, danos aos ciclos biogeoquímicos do planeta e agravam o efeito estufa.


Combustível

Quando se produz a uma temperatura suficientemente baixa, isto é, inferior a 500 °C, não havendo, regra geral, emissão de luz. A oxidação de um metal (ferro, cobre, zinco, etc.) em contato com o ar úmido é um exemplo deste tipo de combustão. A combustão lenta é uma forma de queima que acontece a baixas temperaturas. A respiração celular e formação de ferrugem são exemplos de combustões lentas.

Comburente

É aquela em que se produz chama e, vulgarmente, designa-se por fogo. Neste caso, devido à mistura dos gases inflamados com o ar forma-se a chama. No caso dos sólidos, cuja combustão decorre à superfície, verifica-se a incandescência a partir da sua ignição e também através da formação de brasas. Estas surgem quando o combustível já não liberta gases suficientes para provocar chama. A combustão do carvão ilustra estes aspectos.

Energia

Combustão resultante da mistura de gases ou partículas finamente divididas com o ar numa percentagem bem determinada – mistura explosiva ou detonante – propagando-se a uma velocidade superior a 340 m/s. Neste caso, a mistura tem de ocupar todo o espaço onde está contida e, no momento da explosão, provoca uma elevação de temperatura ou de pressão ou de ambas, simultaneamente, sobre todo o espaço confinante.

Usamos como combustível a gasolina, o etanol ou o diesel. Combustão é o processo de obtenção de energia.

Combustão completa

Em uma combustão completa, o reagente irá queimar no oxigênio, produzindo um número limitado de produtos e uma chama oxidante, azul. Quando um hidrocarboneto queima no oxigênio, a reação gerará apenas dióxido de carbono e água. Quando elementos como carbono, nitrogênio, enxofre e ferro são queimados, o resultado será os óxidos mais comuns. Carbono irá gerar o dióxido de carbono. Nitrogênio irá gerar o dióxido de nitrogênio . Enxofre irá gerar dióxido de enxofre . Ferro irá gerar óxido de ferro (III) . A combustão completa é naturalmente improvável de ocorrer, a menos que a reação ocorra em situações cuidadosamente controladas, como, por exemplo, em um laboratório.

Combustão turbulenta

A combustão turbulenta é caracterizada por fluxos turbulentos. É a mais usada na indústria (ex: turbinas de gás, motores a diesel, etc.), pois a turbulência ajuda o combustível a se misturar com o comburente.

Combustão incompleta

Na combustão incompleta não há o suprimento de oxigênio adequado para que ela ocorra de forma completa. O reagente irá queimar em oxigênio, mas poderá produzir inúmeros produtos. Quando um hidrocarboneto queima em oxigênio, a reação gerará dióxido de carbono, monóxido de carbono, água, e vários outros compostos como óxidos de nitrogênio, dependendo da composição do combustível. Também há liberação de átomos de carbono, sob a forma de fuligem. A combustão incompleta é muito mais comum que a completa e produz um grande número de subprodutos. No caso de queima de combustível em automóveis, esses subprodutos podem ser muito prejudiciais à saúde, ao meio ambiente e ao próprio carro.

Combustão de combustíveis líquidos

A combustão de um combustível líquido em uma atmosfera oxidante acontece na verdade em forma gasosa. Isto quer dizer, quem queima é o vapor, não o líquido. Portanto, um líquido inflamável normalmente só irá pegar fogo acima de uma certa temperatura, que é seu ponto de fulgor. Abaixo dessa temperatura, o líquido não irá evaporar rápido o suficiente para sustentar o fogo caso a fonte de ignição seja removida.

Origem: Wikipédia, a enciclopédia livre.

Aviso!

Espaço reservado para a informação acadêmica do assunto. Conhecimento aplicado no livro Eternidade 1 - Fatos 2020 e 2021.

Com o tempo posso preencher esse espaço adicionando informação e novos direcionamentos para meus livros.

Tentarei facilitar, mostrando o significado e o caminho, para que consiga entender com base científica tudo sobre a Eternidade 1.

Você tem que saber ou pelo menos conhecer, para aplicar o conhecimento na realidade.

Se chegou até aqui, peço desculpas pela falta de informações.

Obrigado pela atenção, agradeço a Deus, tenho esperança no futuro melhor.

Em construção...

Marcadores: Combustão, Capítulo 33 - Projeto Viagens na velocidade da luz, Eternidade 1 - Fatos 2020 e 2021, Estudos acadêmicos.




Cintura de asteroides

 

Cintura de asteroides

Cintura de asteroides, cinturão de asteroides, cintura principal ou cintura interna de asteroides é uma região circular do Sistema Solar formada por múltiplos objetos irregulares denominados asteroides. Essa região está localizada aproximadamente entre as órbitas de Marte e Júpiter.


Esta faixa tornou-se conhecida também como cintura principal, contrastando com outras concentrações de corpos menores como, por exemplo, o cinturão de Kuiper ou os asteroides troianos que coorbitam com Júpiter.

Mais da metade da massa total da cintura está contida nos quatro objetos de maior tamanho: Ceres, 4 Vesta, 2 Palas e 10 Hígia. Ceres, o maior e o único planeta anão do cinturão, possui um diâmetro de 950 km e tem o dobro do tamanho do segundo maior objeto. Contudo, a maioria de corpos que compõem o cinturão são muito menores. 

O material do cinturão, apenas cerca de 4% da massa da Lua, encontra-se disperso por todo o volume da órbita, pelo qual seria muito difícil atravessá-lo e chocar com um destes objetos.

Porém, dois asteroides de grande tamanho podem chocar entre si, formando o que é conhecido como "famílias de asteroides", que possuem composições e características similares. As colisões também produzem uma poeira que forma o componente majoritário da luz zodiacal. Os asteroides podem ser classificados, segundo o seu espectro e composição, em três tipos principais: carbonáceos (tipo-C), de silicato (tipo-S) e metálicos (tipo_M).

A cintura de asteroides formou-se na nebulosa protossolar com o restante do Sistema Solar. Os fragmentos de material conteúdos na região do cinturão formaram um planeta, mas as perturbações gravitacionais de Júpiter, o planeta mais massivo, fizeram com que estes fragmentos colidissem entre si a grandes velocidades e não pudessem agrupar-se, tornando-se o resíduo rochoso atual. 

Uma consequência destas perturbações são as lacunas de Kirkwood; zonas nas quais não se encontram asteroides devido a ressonâncias orbitais com Júpiter, e as suas órbitas tornarem-se instáveis. Se algum asteroide passasse a ocupar esta zona seria expelido na maioria dos casos fora do Sistema Solar, embora ocasionalmente possa ser enviado para algum planeta interior, como a Terra, e colidir com ela. Desde a sua formação foi expulsa a maior parte do material.

Formação

Em 1802, pouco depois da descoberta de 2 Palas por Heinrich Olbers, este sugeriu a William Herschel que Ceres e 2 Palas poderiam ser fragmentos de um planeta maior, que no passado poderia ter orbitado a região entre Marte e Júpiter.

Segundo esta hipótese, o planeta descompôs-se faz milhões de anos devido a uma explosão interna ou a impactos de cometa.

Contudo, a grande quantidade de energia necessária para que tal evento acontecesse, em combinação com a escassa massa total da cintura de asteroides (apenas cerca de 4% a massa da Lua), evidencia-se que esta hipótese não pode ser válida. Além disso, a composição química entre os asteroides do cinturão possui diferenças.

Portanto, atualmente a maioria de cientistas aceita que os asteroides nunca foram parte de um planeta.

Em geral, acredita-se que o Sistema Solar foi formado a partir de uma nebulosa primitiva, composta por gás e poeira, que colapsou sob influência gravitacional formando um disco de material em rotação.

Enquanto no centro, onde se teria formado o Sol, a densidade aumentava com rapidez, nas regiões externas do disco formaram-se grãos sólidos de pequeno tamanho que, com o tempo, foram agrupando-se mediante processos de acreção e colisão para formarem os planetas.

Os planetesimais que encontravam-se na região do atual cinturão foram perturbados gravitacionalmente por Júpiter, provocando que uma determinada parte dos planetesimais adquirisse excentricidades e inclinações muito elevadas, acelerando a altas velocidades, o que causou que colidissem entre eles e, em vez de se agruparem para formar um planeta desagregaram-se em múltiplos resíduos rochosos, os asteroides.

Uma grande parte foi ejetada para fora do Sistema Solar, sobrevivendo menos de 1% dos asteroides iniciais.

Órbitas

Os asteroides orbitam no mesmo sentido que os planetas, com períodos orbitais de 3,5 até 6 anos, geralmente. A excentricidade média dos asteroides é sobre 0,15, embora alguns como 1862 Apolo e 944 Hidalgo possuam excentricidades muito elevadas (em torno de 0,6). Alguns asteroides possuem inclinações orbitais superiores a 25°, entre eles o asteroide 945 Barcelona, descoberto por José Comas em 1921, cuja inclinação é de 32,8°. O asteroide com a órbita mais inclinada é 1580 Betúlia, com 52°.

Mudanças nas órbitas

Embora as ressonâncias orbitais dos planetas sejam o modo mais efetivo de modificar as órbitas dos asteroides, existem outros meios. Algumas evidências, como o número de NEA ou meteoritos perto da Terra, poderiam indicar que as ressonâncias não são capazes de produzi-las.

Inicialmente foi postulado que as colisões aleatórias entre asteroides provocariam a queda nas lacunas de Kirkwood, ejetados pelas perturbações dos planetas. Contudo, os modelos computacionais mostraram que os efeitos que isto produz se encontram várias ordens de magnitude abaixo do observado. Portanto, devem ser mais importantes outros efeitos.

Colisões

Devido à elevada população do cinturão principal, as colisões entre asteroides ocorrem frequentemente, em escalas de tempo astronômicas. Estima-se que cada 10 milhões de anos ocorre uma colisão entre asteroides cujos raios excedem os 10 km.

As colisões ocasionalmente provocam a fragmentação do asteroide em objetos menores, formando uma nova família de asteroides. Também pode ocorrer que dois asteroides colidirem a velocidades muito baixas, em cujo caso ficam unidos. Devido a estes processos de colisão, os objetos que formaram a cintura de asteroides primitivo apenas guardam relação com os atuais.

Meteoritos

Os entulhos originados nas colisões podem formar meteoroides que finalmente alcancem a atmosfera terrestre. Uma percentagem maior de 99,8% dos 30 000 meteoritos achados até a data na Terra acredita-se que foi originada no cinturão de asteroides. Em setembro de 2007 foi publicado um estudo que sugestiona que o asteroide 298 Baptistina sofreu uma colisão que provocou o envio de uma quantidade considerável de fragmentos ao interior do Sistema Solar. Acredita-se que os impactos destes fragmentos criaram as crateras Tycho e Chicxulub, situadas na Lua e no México respectivamente, e este último pôde ter provocada a extinção dos dinossauros faz 65 milhões de anos.

Ceres

Ceres é o maior corpo celeste do cinturão, e o único classificado como planeta anão, desde a redefinição dos planeta de 2006.

Esta classificação é devida sua gravidade e forma quase esférica (com um diâmetro de 940 km aprox.), e portanto possui equilíbrio hidrostático. Antes de 2006 era considerado o asteroide maior, mas atualmente é o planeta anão menor, ao serem maiores que outros objetos que compartilham essa mesma classificação, como Plutão ou Éris.

Vesta

Vesta, é o segundo asteroide de maior massa, o terceiro em tamanho, e o mais brilhante de todos. Devido possuir um albedo de 42%, maior até mesmo que o da Terra (37%). Constitui 9% da massa total do cinturão, e o seu diâmetro médio é de 530 km. Orbita a uma distância do Sol similar à de Ceres. Vesta possui um núcleo metálico bem denso (de ferro e níquel), um manto composto de olivina, e uma crosta muito fina de poucos quilômetros de grossura.

Palas

Palas é o segundo objeto de maior tamanho do cinturão, embora Vesta seja mais massivo. Representa cerca de 7% da massa do cinturão, com albedo de 12%, do tipo-C. Possui a órbita mais excêntrica dos quatro, 0,23, que faz sua distância ser mais próxima ao Sol (2,1 UA), distante da mais afastada (3,4 UA). Também a sua inclinação orbital é superior, com 34° (as dos outros três são menores que 10°). Acredita-se que um impacto sobre a sua superfície formou a família Palas, embora o número de membros seja escasso.

Hígia

Hígia é o quarto maior objeto do cinturão de asteroides, com um diâmetro meio de 431 km, embora apresenta uma forma alongada, e constitui cerca de 3% da massa total do cinturão. Foi descoberto por Annibale de Gasparis em 1849. Quanto à sua composição, é um asteroide carbonáceo (tipo-C) com um albedo de 7% . É o membro principal da família homônima à qual dá nome. Trata-se, dos quatro, do asteroide mais externo, cujo afélio atinge as 3,5 UA, e tarda 5,5 anos em completar a sua órbita.

Origem: Wikipédia, a enciclopédia livre.

Aviso!

Espaço reservado para a informação acadêmica do assunto. Conhecimento aplicado no livro Eternidade 1 - Fatos 2020 e 2021.

Com o tempo posso preencher esse espaço adicionando informação e novos direcionamentos para meus livros.

Tentarei facilitar, mostrando o significado e o caminho, para que consiga entender com base científica tudo sobre a Eternidade 1.

Você tem que saber ou pelo menos conhecer, para aplicar o conhecimento na realidade.

Se chegou até aqui, peço desculpas pela falta de informações.

Obrigado pela atenção, agradeço a Deus, tenho esperança no futuro melhor.

Em construção...

Marcadores: Cintura de asteroides, Capítulo 33 - Projeto Viagens na velocidade da luz, Eternidade 1 - Fatos 2020 e 2021, Estudos acadêmicos.




Chumbo

 

Chumbo

O chumbo (do latim plumbum) é um elemento químico de símbolo Pb, número atómico 82 (82 prótons e 82 elétrons), com massa atómica igual a 207,2 u, pertencente ao grupo 14 (anteriormente conhecido como IVA) da classificação periódica dos elementos químicos. À temperatura ambiente, o chumbo encontra-se no estado sólido.


É um metal tóxico, denso, macio, maleável e mau condutor de eletricidade. Apresenta coloração branco-azulada quando recentemente cortado, porém adquire coloração acinzentada quando exposto ao ar. É usado na construção civil, baterias de ácido, em munição, proteção contra raios-X e raios gamma e forma parte de ligas metálicas para a produção de soldas, fusíveis, revestimentos de cabos elétricos, materiais antifricção, metais de tipografia, etc. O chumbo tem o número atômico mais elevado entre todos os elementos estáveis.

É um metal conhecido e usado desde a antiguidade. Suspeita-se que este metal já fosse trabalhado há 7 000 anos, utilizado pelos egípcios sendo parte de ligas metálicas devido suas características e pelos romanos como componentes de tintas e cosméticos.

Características principais

O chumbo é um metal pesado (densidade relativa de 11,4 a 16 °C), de coloração branca-azulada, tornando-se acinzentado quando exposto ao ar. Muito macio, altamente maleável, baixa condutividade elétrica e altamente resistente à corrosão. O chumbo se funde com facilidade (327,4 °C), com temperatura de vaporização a 1 725 °C. Os estados de oxidação que pode apresentar são 2 e 4. É relativamente resistente ao ataque dos ácidos sulfúrico e clorídrico, porém se dissolve lentamente em ácido nítrico. O chumbo é um anfótero, já que forma sais de chumbo dos ácidos, assim como sais metálicos do ácido plúmbico. O chumbo forma muitos sais, óxidos e compostos organoplúmbicos. Sua Massa Molar é de 207,19.

Sua Solubilidade em água à 25 °C é de 9 580 mg/L. Seu Kow é de 0,73. Sua pressão de vapor à 25 °C é de 3,02E-009 mm Hg. Sua constante de Henry é de 0,0245 atm-m³/mole.

Aplicações

Utiliza-se uma grande variedade de compostos de chumbo, como os silicatos, os carbonatos e os sais de ácidos orgânicos, como estabilizadores contra o calor e a luz para os plásticos de cloreto de polivinila (PVC). Usam_se silicatos de chumbo para a fabricação de vidros e cerâmicas. O nitreto de chumbo, Pb(N3)2, é um detonador padrão para os explosivos. Os arseniatos de chumbo são empregados em grande quantidades como inseticidas para a proteção dos cultivos. O litargírio (óxido de chumbo) é muito empregado para melhorar as propriedades magnéticas dos imãs de cerâmica de ferrita de bário.

O chumbo forma ligas com muitos metais e, em geral, é empregado nesta forma na maior parte de suas aplicações. Todas as ligas metálicas formadas com estanho, cobre, arsênio, antimônio, bismuto, cádmio e sódio apresentam importantes aplicações industriais (soldas, fusíveis, material de tipografia, material de antifricção, revestimentos de cabos elétricos, etc.).

Origem: Wikipédia, a enciclopédia livre.

Aviso!

Espaço reservado para a informação acadêmica do assunto. Conhecimento aplicado no livro Eternidade 1 - Fatos 2020 e 2021.

Com o tempo posso preencher esse espaço adicionando informação e novos direcionamentos para meus livros.

Tentarei facilitar, mostrando o significado e o caminho, para que consiga entender com base científica tudo sobre a Eternidade 1.

Você tem que saber ou pelo menos conhecer, para aplicar o conhecimento na realidade.

Se chegou até aqui, peço desculpas pela falta de informações.

Obrigado pela atenção, agradeço a Deus, tenho esperança no futuro melhor.

Em construção...

Marcadores: Chumbo, Capítulo 33 - Projeto Viagens na velocidade da luz, Eternidade 1 - Fatos 2020 e 2021, Estudos acadêmicos.